
Using Field Access Frequency to Optimize Layout of

Objects in the JVM

ABSTRACT
Increasing spatial locality of data can alleviate the gap between memory
latency and processor speed. Structure layout optimization is one way
to improve spatial locality, and consequently improve runtime
performance, by rearranging fields inside objects. This research
examines modifying IBM's JVM with the ability to reorder fields inside
Java objects from access frequency information (hotness) in the
presence of storage optimization.

INTRODUCTION
Structure layout optimization is performed based on:

• Hotness: the total number of accesses to a particular field.

• Affinity: fields accessed close to each other in time.

Figure 1: Field reordering using hotness or affinity.

HOTNESS ANALYSIS
Step 1: gathering information about particular classes and their non-
static fields in a profiling run.

Figure 2: A hash table used in profiling.

HEURISTICS
IBM's JVM has its own layout scheme for objects that is well optimized
from a memory footprint point of view.

Figure 3: One sample object's layout in IBM's JVM.

Step 2: perform the following proposed approaches:

• Local Hot: the IBM's JVM instructions for laying out fields inside
objects in the same groups are followed.

• General Hot: memory efficiency is neglected and fields are reordered
inside objects only according to their hotness.

• General Packed: a combination of the above approaches.

Suppose an object has the following fields in the order defined by the
programmer: F1 (4 bytes), F2 (8), F3 (4), F4 (8), F5 (8), F6 (4), F7 (8), F8
(8).

Figure 5: An example of object layout in the different approaches

RESULTS

CONCLUSION
There is almost a 9% increase in the number of cache misses in the
worst case and more than a 12% improvement in the best case in
different benchmarks. Also, in the worst case, the speed is slowed down
by around 10%, and in the best case it is improved by more than 20%.

In the future, field reordering could be done using affinity as well as
hotness. In this approach, fields could be reorganized according to the
number of times they are accessed together within a short time interval
and as a result, the chance that related fields are placed near each other
in the cache would be increased.

Taees Eimouri1, Kenneth B. Kent2, Aleksandar Micic3, Karl Taylor4
1,2University of New Brunswick, Faculty of Computer Science,

Fredericton, Canada
3,4IBM, Ottawa, Canada

{teimouri,ken}@unb.ca,{aleksandar_micic,taylor}@ca.ibm.ca

Table 1: Number of classes on which

optimization is performed.

Table 2: A comparison of the total extra size

in bytes added to objects.

Table 3: A comparison of the number of cache misses in different benchmarks.

Table 4: A comparison of the execution time in different benchmarks.

